STUDIES in AUSTRALIAN GAMMARIDEA

(I) The Genus CERADOCUS

By Keith sheard, Honorary Assistant in Zoology, South Australian Museum.
Text-fig. 1-8.
This revision has been made possible by grants from the Trustecs of the Science and Industries Endowment Fund of the Council for Scientific and Industrial Research and from the Board of Governors of the Public Library, Museum and Art Gallery of South Australia.

Acknowledgments are also due to the Council of the Canterbury University College, New Zealand, for the loan of the whole of the extensive Chilton collection of Amphipoda; to the Trustees of the Australian Muscum, Sydney, for the loan of their collcction, including many of Haswell's type specimens; to the University of Sydney for the loan of the Macleay collection ; to the Trustces of the Natiomal Museum, Melbourne, for the loan of the Sayce collection ; and to Mr. H. M. Halc, Dircctor of the South Australian Museum, whose extensive collections from South Australian waters provide a basis for these studies.

This paper is the first of a series redescribing early Australian type Gammaridea, together with related forms collected later. Keys to the species and genera dcalt with will be given where possible, but it cannot be sufficiently stressed that these do not necessarily express relationships, but are designed to permit workers to effect a preliminary sorting-out of matcrial.

The Ceradocus group of genera appears to consist of the following, which may be scparated by the key given below:

Metaceradocus (Chevreux 1925, p. 304) ; Ceradocoides (Nicholls 1938, p. 123) ; Paraceradocus (Stebbing 1899, p. 426) ; Ceradocopis (Schellenberg 1926, p. 365) ; Ceradocus (A. Costa 1853, p. 170) ; Quadrivisio (Stebbing 1907, p. 160) (=Psoudoceradocus Shoemakcr 1933, p. 11) ; Bathyceradocus (Pirlot 1934, p. 223).

Ceradocus Group.
Gammaridae witl the following characters (adapted from Stebbing 1906, p. 364).

Pleon segments 4-6 not coalesced; pleopods with two rami; uropod 3 with two clongate rami; tclson cleft; antema 1, accessory flagellum of more than 2
segments ; body not at all or searcely carinate, without groups of dorsal spimules; wopod 8 rami not very unequal.
a. Maxilla 1 , inner plate setose at apex ; maxilla 2 , imner plate

> setose along inner margin.
b. Antenna 1, shorter than antema ${ }^{2}$

Metacoradocus.
(M. perdentulus Cherreux. Smegal.)
hib. Antema 1 , longer than antenna 9 .
c. Peracopods 3-5 with hases linear. ..

Cerchlocoides
(C. rhillomi Nicholls, Commonweatth Bay, Macquarie Island.)
 remphopus Stehbing. East Australia.)
ata. Aasilta 1 and 2, imner plate setose along imner margin.
d. Cropod 3, outer ramus 2 segmented ; lower lip without
imer lobes \qquad
Partererulocus
(C. Bergucheni Schollenberg, Kerguden.)
dd. Uropod 3 , onter ramus normal, lower lip with immer plates.
e. Side plate, gmathopod 1 produced forwands to an acute angle.

1. Pleon segments postero-dorsally multidentafe (Denticeralocus).
C. (D.) rubromaculatus (Stimpson), C. (D.) ramsayi (Haswell), C. (D.) serratu. (Spence Bate), C. (D.) selliclensis, C. (D.) burverensis (Australian scas); U. (D.) mhttoni (New Zealand); C. (D.) cheoreuxi (Pacific), C. (D.) buruardi (South Africa).
fil. Plem segments not postero-dorsally multidentate. Ceradorus: (Corudocus).
C. (C.) orchestiipes A. Costa (Mediterranean, Bermudas) ; C. (O.) semiserratus (Bate) (North Atlantic) ; C. (C.) torelli (Goës) (Aretic Ocean) ; C. (C.) parkeri and C. (C.) coldi Kunkel (Bermudas).
C. (C.) baffini Stephenson (off Baffin Land) should probably be referred to at least a sub-genns.
ce. Side plate, gnathopod 1, rounded.
g. Nandible, palp, segment. III longer than segment II. Quadrivisio. Q. bengalensis Stebbing (Pt. Canuing, Bengal; brackish water, Zanzibar). Q. lutzi (Shoemaker) (British Guiana, West Indies).
gg. Mandible, palp, segment III shorter than segment II. Bathyceradocus. B. stephensoni Pirlot (Hast Indies).

The group as a whole may be readily separated from the Muero-Ehasmopus group by the setose character of the inner plates of maxillae 1 and 2. In this conneetion, the falcate segment III of the mandibular palp of Mctacerodoms and the linems semment III of Geradocopsis are of interest. Throngh the kindness of Professor G. R. Nicholls 1 am able to figure (Fig. $\overline{5}, \mathrm{~N}-\mathrm{O}$) the mandible of reradoroides chiltoni Nicholls, which shows, in my opinion. the partial development of a process on seement 1 of the palp distally.

Cerrabreus A. Costa.

(For referentes sec Stobloing 1906, p. 430, and 1910, p.598.)
The examination of series of specimens related to Corudorus rubromaculehns (Stimps.) makes it neeessary to divide the geme into two sections, as follows:
(a) Ceradocus ('cradocus) : Veradocus as defined by Stebbing (1906, p. tho), with the addition of: plem segments with postero-dorsal margins not multidentientate. Cenotype Cormones (Cerulorns) orchestiopes A. Costa.
(b) Geralocus (Denticeradocus) sub-gen, nov: Ceradocus as defined by Stebbing (1906,1 . 480), with the addition of : maxilla 1 , outer plate with 9 spine-tecth, palp with 1 b spines; pleon semments with posterodorsal margins multidenticulate; mandible with segment 1 ol palp ahways prodnced on imer margin distally.
It may be noted that in stebbing's definition cited above, hes states that gnathopod 2, among other appendages, are as in Mara, i.e. suathopod 2 matly much the larger in the male. This is not strictly true lor the snbgemus Demiceradocus, as here grathopod 2 is usually of a comparative size in the two sexes, with that of the female oceasionally athaining the larger relative size in aged specimens.

Key to the Srectes of Ceradocus (Denticeradocus).
is. Pleon segments 4 and 5 with a large medio dorsal tooth.
b. Telson ; cach half with 3 apical spines; 1 lateral hair.
C. (D.) cupensis.
bb. Telson; cach half with 5 apical spines; 1 lateral hair.
C. (D.) ramsayi (llaswell).
aia. I'leon segments 4 and jo menly dentate. $^{\text {a }}$
c. Telson; each half with 2 apical spines, 1 latemal bair.
C. (D.) rubromaculatus (Stimpson).
ec. Telson; each halt with 4 apical spines.
d. One lateral hair on margin of telsom.
c. Mandible; pajp, segment. 11 I about $2 / 3$ segment, 1 ; pleon side plates 1 and 2 well toothed above and below.
U. (D.) sellickensis sp. nov.

ec. Mandible; palp, segment III sub-equal to segment L; pleon side plates 1 and 2 barely serrate. plates 1 and 2 barely servate.
 C. (D.) serrata (Bate).

dd. Two lateral hairs on margin of telson. C. (I).) chilton, sp. nov.
ece. Telson, wach half with 5 apical spines, 1 lateral hair.
O. (D.) chnoreuxi sp. nov.

The species are fairly uniform as to their maximum recorded length, which is about 25 mm .

The speeimen deseribed by Miers (1884, 1), 567, pl, 52, D, 1) from the Seychelle Istands moder the name of Macre dinersimentes is undondedty to be placed in this subgems, ant had best retain the name Comenerns (Donticerudocus) diversimunus (OLiers).

Cerabocus (Dentweradolus) sellokensis sp. bov.

Serudocws rubromarulatus (nee Stimpson) : Hate, 1927, p. 31t; 1929, pp. 21:3-214
excluting figs. $210=O$. (D.) romsagi (Haswell), $211=C$. (D.) servata Bate) ; Sheard, 1936, p. 177, fig. 4.
Desmiption. Body elongate, head nearly equal to first two semments combincd, inter-antennal angle prodnced and rounded, separated from laterat angle by a simus. Eyes small, sub-oval, dark.

Antcmat 2 with pedunde failing to reach to the end of the peduncle of ant tenna 1 ; the whole antenna reaching just beyond this joint ; ghand cone just fails to reach next joint, ultimate segment of peduncle 4/5 ut penultimate.

Mouth parts; upper lip rounded, lower lip with suall inner lobes; mandible, palp, segment I with pronomeed hinge-like process on inner ent, sexment If long and setose on inner margin, segment 111 cone-shaped with long setne, about $2 / 3$ segment 1.

Maxillat 1; outer plate with 9 spinc-tpeth, paly with $1: 3$ spines, inner plate fringed with loug hairs to base of iumer margin ; this plate appears to vary slightly from the shape figured to nearly the normal subquadrate.

Maxilla 2 ; fringed along imner marem of imuer plate with two rows of setae.
side plates; first a little the deepest witb its anterior angle forwady drawn ont to a sharp point, lightly tringed with small hairs atong the lower margin; second and third roumded; fourth not excavate behind; fifth, sixth, and seventh, small, hilobed.

Ginathopod 1 ; small, hasis a little indented on the inmer margin; carms, latio of length to width $=2: 1$; propodus, ratio of length to width $=1 \cdot 7: 1$.

Fig. 1. Ceradocus (Denticeradocus) sellickensis (type δ^{7}): A, antenna 1; B, antenna a; U, eye lobe and basal joints antenna $2 ; \mathrm{D}$, mandible, palp; E , mandible, cutting edge; F , maxilla 1, spines of outer plate; G, maxilla 1, inner plate; H, maxilla 2; I, gnathopod 1; J, gnathopod 1, hand; K, gnathopod 1, defining angle palm; L, gnathopod 2; M, gnathopod 2, pahn; N , peracopod 1 ; O, peracopor 1, dactyl; $\mathrm{P}-\mathrm{R}$, peracopods $3-5$; $\mathrm{S}-\mathrm{U}$, pleon side plates $1-3$; V, uropod 3; W, telson. (K.S. del.)

Gnathopad ${ }^{2}$; enlarged in both sexes, hasis stout, propodus entarged, pabm tramsverse, defined by a tooth-like process (which is oceasionally much entarged) not toothed, but in older specimens ocensionally becoming rugose, no differentiadion between the sexes.

Purgeopods 1 and 2; slender, shorter than remainder, hasis the stontest, not indentated along inner margin but with several small groups of hairs.

Peraeopods: $3-\overline{5}$; basis expanded and lightly serrate; the hinder margins prodnced to a simple, acute angle in peracopods 4 and 5.

Peracon smooth on dorsal surface, pleon servate along the postero-dorsal margins of the segments, pleon sidu plates 1 to 8 serrate above and below. Uropods 1 and 2 reach just beyond the peduncle of mopod 3 ; rami subequal, slender, the dursal margins of therge pleon segments serrate.

Uropod \quad; peduncle short, rami lanceolate and elongate but irvegnlar in oulline, spinnlose and truncate at the tips.

Tclsom; cleft, with divergent lobes, sach lobe bearing is large and one surall apieal spine, with a small hain midway on each lateral wargin. branchiac; medinu size, sac-like, inner wall thick.

Type (Reg. No. U. 2121, S.A. Musemu).
Lor. Vivonne Bay, Kangaroo Island (H. M. Male and N. B. Tindate); Sellick's Beach, St. Vincent Gnlt (H. M. Hale, Mar., 1936), (H. M. Hale and K. Sheard, Nov., 1936, Jan., 1937), K. Sheard (Apr., 1939), Port Willnuga, St. Viucent. Gulf (H. M. Hale, Mar., 1937), (H. M. Hale and K. Sheard, Jan., 1939); Marino, St. Vincent Gulf (C. Baker, 1910) ; Weeding's Reef, Moonta Bay, Spencer Gulf (B. J. Weeding, Nov., 1938) ; 1nvestigator Straits (Dr. J. C. Verco, 1910) ; Colfin Bay (J. T'. Mortlock, 1938).

Ceradocus (Dentheradocus) rimbomaculatus (Stimp.).
Gammarus rubromaculatus Stimpson, 1855, p. 394.
Moera rubromuculula (Stimpson) Haswell, 1880, p. 267, pl. X, fig. 4, 1882, p. 295; 1885, p. 105, pl. XV, figs. 5-12.
Ceratocus rubromaculutus (Stimpson), Della Valle, 1893, p. 720 (part).
Ceralocus rubromaculatus (Stimpson), stebbing, 1906, p. 430 (part); : 1910, p. 598.
? Ceradocus rmbromaculatus (Stimpson) Barnard, 19:1, p. 124.
Stimpson's original deseription is as follows:
"49. Gammarus rubromaoulutus. Rather large, spotted with erimson above, white below. Eyes sub-ovate. Superior antemat half as lone as the body, inferior
ones much shoter and nore stender, First pair of hathds very small and weak; those of the sceond pair large, compressed, and with a sharp spine at the middle of the lower edge where the finger terminates. Abdomen exceeding the thorax in length or at least equalling jt, the appendages excluderl. Last pair of caudal stylets half as long as the abdomen ; their rami long and broad, equal and spinutated along their edges. Length hati an inch. Found on muddy bottom in the circumlittoral zone.

Fig. 2. Coratocus (Denticeradocus) rubromaembatus (Stimpson); (Haswell's origimal

 plates 1-3; N-P, wropods 1-3; Q-R, telson. (K.S. del.)
"Hob. Australia, at Port Jackson."
Haswell (1880, p. 267, pl. X. fig. 4), describes and figures with reasouable acenraey a specimen which he attributes to Stimpson's species from the same locality. In the same paper (p.268, pl. X, fig. 5) he deseribes a new species Mnera spinosa, from Tasmania, evidently having overlooked Bate's Mcgermoera servala thom the same locality.

Earlier in the same paper (p. 264) he aseribes provisionally to Melita, a new species (12 (!) romsryi) with mopod 3 missing . In a later note ($p .3$. 35) this species is placed in Moern. Haswell (1885, p. 103) thom unites the thres species and includes Mocra festion Chilton in the synonomy. This amalyamation is made on the form of gnathopod 2. Stebbing (1906, p. 430) follows the usage then cmerent, but later $(1910, p, 643)$ regards the position as still doubtrul. Chitom (1916, p. 359) separates M. fcsticu Chiltou from this synonoms.

The confusion was probably cansed, in the first plaee, by the fact that Stebbing (1888, p. 1008 , plates 95,96) gave a composite description, wuler the name M. rubromatulatus stimpson, of two species, M. ramsayi Haswell, and the one which is (leseribed in this paper as Corodocus (Denticerudocus) coponsis. Later anthors. lacking material, have had no option but to ascribe specimens to this species, and the tradition has grown up that Eerudocus rubromuculatus (Stimp.) is a cosmopolitan species. Ware the forms pelagic, this possibility would of course have to be very serionsly regarded, but as they are littoral, such an easy way out camot be taken without rery serions consideration.

For my part, after studying Haswell's Ms, notes, I am reasonably certain that he described a specimen which specifically conforms to Stimpson's type. Inswell's specimen is here refigured, and such parts as are necessary are redeseribed. In the Port Jackson material, it is easy to find speeimens, male ant femate, immature and adult, which vary around the type speemen, and which do not cross over into the ramsayif form.

Actually it would appear that here we have a case ol two closely-related populations existing side by side. Therw is some evidence to show that their breeding lates and breeling seasoms are slightly different, but this is inconclusive. At all events, in life, they are readily distinguished since O. (D.) rubromaculutus (Stimp.) is spotted with crimsom, while O. (D.) ramsayi (Haswell) is banded, In littoral crustacea generally, colour patterns appear to be an ureliable guide, but in this case there is a high degree of correlation botween the colunr and other characters.
Additions to Itaswell's Deseription (1880, p. 267):
Month parts; in emeral like C.(D.) sellickemsis, but mandibutar palp with segments I and III subequal; maxilla 1 with imer plate more truly subquadrate, wider than deep.

Gnathopod 1 with side plate produced: basis with seatered hatirs on bolb margins; carpus, ratio length to width $=2: 1$; propoclus, ratio length to width $=1.6: 1$.

Gnathopod 2 ; like (\quad. (D.) stillickensis but patm more oblique; as in the tormer species no specimens have been found with a tendeney to the development of tecth on the palm.

Peraeopods 1 and 2 ; basis indented and setose along inner margin, merus very little expanded, ahnost linear.

Peracopods :3-5; basis moderately expanded, hinder edge prodnced to longep point than in the preceding species.

Pleon side plates 1-3 prell toothed above and below; 4 and 5 recmbarly dentate. no large teeth.

Uropods 1 and 2 reaching to end of peduncle of 3 ; uropod 3 with rami lanceo. late and elongate but strong and wide. 'Telson with two apical spines and one shore lateral hair on each half.

Branchiae of medium size, sac-like.
Loc, Port, Jaekson (Australian Musemm, Reg. Nos. G. 5391, P. 2151, P. 3479. P. 3480-3481 (part), P. 3489).

Ceradocus (Denticeradoons) ramsayi (Haswell).
Melitg.? ramsayi Maswell, 1880, p. 264, pl. X, fig. 1.
Moera romsayi (Haswell), 1880, p. 324: 1882, p. 253.
Mocru mbromarulntus (Stimps.) Haswell, 1885, 1). 105, pl. XV, figs. 5-12 (part).
Macra rubromuculath (Stimpson) Stebling, 1888, p. 1008 (part), pl. XCV A, pl. XCVI B.
Cerulocus rubromeculatus (Stimpsou) Della Valle, 1898, p. 720 (part). Ceradocus rubromaculatus (Stimpson) Stebbing, 1906, p. 431 (part).
Maera ramsayi Haswell, Stobbing, 1910, p. 642.
Cerolocus rubromuculatus var. ramsayi (Haswell), Chilton, 1923, p. 94, fig. 4.
Ceralocus: ruhromaculatus non. Stimpson, Hale, 1929, fig. 210.
Cerudocus rubromarulutus (Stimpson), Sheard, 1937, p. 24 (part).
To Haswell's description (1880, p. 264) is added the following:
Antenaa 1; pedmele relatively stout, a litle shorter than that of antenna 2 .
Fye sub-oval. Mouth parts; of same gencral type as in C. (D.) sellickensis, but mandible or patp with segment 11 longer than segment I, hinge process roundert.

Maxilla 1 with spines of palp and onter plate weak, imer plate like that of C. (II.) rubromaculatus (Stimpson) ; maxilta ${ }^{2}$ with setae very long, plates widened. Lower lip setose.

Guathopod 1 with side plate forwardly pointed, but not very much outdrawn; basis, with margins not indented; earpus, ratio of length to width, $2: 1$; propodus. ratio of fength to breadth, $1 \cdot 5: 1$.

Gnathopod 2; one side, the right in the specimen described, but generally the left, enfarged, with the propolus well expanded, and always toothed on the patin

Fig. 3. Cerodoows (T)enticeradoous) mamsayi (Iraswell), (type ō): A, head; B, Jower lip; C. mondibles; D, maxilla 1; E, maxilla $2 ; \mathrm{F}$, maxilliped; G-H, gnathopod 1; I, guathopod 2. right; J, gnathopod 2 right, palm; K, gnathopod 2 , left; L, guathopod 2, palm; M-N, peraooprils 1-2; O, peraton segment 7, pleon segments $1-3 ; Q$, peracopod $5 ; R-T$, uropods $1-3$; T, telson; \bar{V}, dorsal outline, pleon segments $4-5$; W, gnathopod 2 , haud, Port Stephens sperimem, immature ob. (K.S. del.)
in older specimens; sometimes in even immature specimens, the toothing may be solid across the palm or sometimes indented by the pressure of the finger (as figured) ; where teeth are present they are always threc in number between the large defining tooth and the hinge.

Peraeopods 1 and 2 slender, as is usual, the basis not indented but furnished with a few setae on the inner margin ; the merus is moderately expanded on its forward edge; 3-5, basis expanded, hind margin distally prodnced to an obtuse angle.

Pleon side plates ; the first, with two very small teeth below, none above; the second with two slightly larger teeth below, slightly serrate above; and the third with two larger teetl below, more definitely serrate above. In this respect, the species is very different from C. (D.) rubromaculatus (Stimp.) (well serrate above and below on pleon side plates 1-3) and from C. (D.) capensis (side plate 2 smooth above, side plate 3 well serrate above and below). Pleon segment 4 dorsally denticulate, the mesial tooth well produced ; 5 smooth, but with a prominent mesial tooth; 6 produced mesially to a small tooth.

Uropods 1 and 2 reaching just to the end of the peduncle of 3 , slender. Uropod 3 with rami lanceolate and elongate, fairly strong.

Telson with four long and one short spine apically, and one short plumose hair on the mid-lateral margin of each half.

Loc. Port Jackson (W. A. Haswell) ; off Eden, N.S.W., 25-30 fathoms (A. Livingstone, Apr., 1922) ; off Norah Mead, Newcastle, N.S.W., 26-38 fathoms (F. A. McNeill, June, 1921) (Chilton collection) ; Port Stephens; Balmoral, Port Jackson ('T. Whitelegge) (Australian Museum, Reg. Nos. P. 5876, P. 3480-3481 part).

Ceradocus (Denticeradocus) serrata (Bate).

Megamaera serrata Bate, 1862, p. 226, pl. XXXIX, fig. 5.
Moera spinosa Haswell, 1880, p. 268, pl. X, fig. 5; 1882, p. 257 ; 1885, p. 105, figs. 5-12 (part).

Ceradocus rubromaculatus (Stimpson) Della Valle, 1893, p. 720 (part).
Ceradocus rubromaculatus (Stimpson) Stebbing, 1906, p. 431 (part).
Maera spinosa Haswell, Stebbing, 1910, p. 642.
Ceradocus rubromaeulatus non Stimpson, Chilton, 1921, p. 71, fig. 9. Ceradocus rubromaculatus non Stimpson, IFale, 1929, fig. 211.

It appears reasonably certain that the species described by Haswell and Bate are the same. The figures given by both authors are poor, but coupled with the descriptions, they are sufficient to justify the union. An cxamination of a number-

Fig. 4. Coradocus (Denticeradocus) serrala (Bate) ; (Haswell's original specimen i) A. hrat; B, lower lip, half; C, mandible: $D-F$, maxillae $1-2 ; F$, maxilliped; G, gnathopor 1; H, gnathopod 1, palm; 1, gnathopod 1, detail of palm; J-K, gnathopod 2, right and left: L.
 (K.心. del.)
of specimens from Tasmanian localitjes gives no rason to suppose that there are two speciss oceupring that area, although on the Vietorian coast specimens onemr which exhibit sligh variations not suffieiently marked, however, to justify any separation. Adthitions to Bate's (1862. p. 96f) and Haswell's (1880, p. 268) deseriptions are:

The pedunclo of antenna 2 just reaches to the end of that of antema 1 , the whole antema reaches well beyond his point; gland come reaching to end of next segment.

Mount parts as nsual, but mandibular palp with segment ITI sub-equal to segment 1 , hinge process pronomeed.

Maxilla 2 with two plamose setne on the outer edre of the outer plate distally.
Gnathopod 1 with side phate moderately produced and pointer forwards, basis moderately expanded, setose behind, earpos longer than proporlas, earpus ratio length to width $=2 \cdot 3: 1$; propodus ration length to willh $-1 \cdot 4: 1$, the palm ridged in the femate as figured.

Gnathopot 2 ; both enlarged, with one as a rule shoghty larger in both sexes, hand swollen and in very old specimens inventar in ontline; pahm obliqne, in young specmens with a dean ontline, later beoming mome rugose and sometimes becoming split 10 form near the hinge a large lat tooth, followed by a depression, then a long, ronnded rugose bulge. The tinger fits into a deep poelset neat the defining tooth, which is verasionally worn nearly flat.

In specimens from Westernport, Vietoriat, the twotonthed form, similar to that found in ($C^{\circ}(D$.$) chiltomi, vecasionally appears.$

Peracopors 1 and 2 with basis very himhty indmed near the body, a row of hatrs along the hinder matgin; $3-5$ with basis expanded and sometimes prorlneed fo a small angle distally on the himder edge; honvever, this is a very variable eharacter, and I cam find no correlation betwem this factor and others. The best that dan be said is that generally there is a tendener for the basal expansion to be produced to a pointed angle in peraempots 4 and 5 , partientarly in the male.

Pleon side plate 1 lighty cromulate behimd, a narly obsolete tooth present ahove and below ; 2 lighty took hed above, wo very suall tecth holow : 3 underately tooned above, two teeth below ; 4 aud 5 denticnlated strongly but evenly.

Tropods 1 and 2 failly strong, teaching just berond the pertuncle of 3 ; wropod 3 with mani lanceolate, strong, and elongate.

Telson with four spines, one usually suall, and one lateral hair on each half. Branchiae very large, jmer wall very thin.

Low. Thasmania (Haswell's original specinens) ; 10 miles north of Cirentar' Head, Tasmania, Endeavour 492; Port Wynyard, Tasmania (N. B. T'indale, Apr.,
1936) ; Altona, Port Phillip, Victoria (M. Freame, Jan., 1933), "colour uniformly bright scarlet" (Aust. Mus. Reg. No. P. 10398) ; Port Phillip (O. A. Sayce) ; West Channel, Victoria (O. A. Sayce); Shoreham, Victoria (O. A. Sayce).

Fig. 5. A-M, Ceradocus (Donticeradocus) serrata (Bate); (Haswell's original specimen $0^{\prime \prime}$: A, head; B, lower lip; C, mandible; D-E, maxilla 1-2; F, gnathopod 2; G-T, peraeopods 3-5; J, pleon side plate 1; K, uropod 3; L-M, telson. (K.S. del.) N-O, Ceradocoides chiltomi Nicholls; $\mathrm{N}-\mathrm{M}$, two views of left mandible.

Cerabocus (Denticeradoctis) chumoni sp. nov.

Muera spinosu Chilton non Haswell, Chilton, 1883, p. 81, † 2, f ; ; 1916, p. 369.
Very like C! (D.) servatu (Bate), but with the following differences:
Autenna 2; peduncle fails to reach the end of the peduncle of antenna 1. Maxilla 2 without phumose setae.

Fig. 6. Cerwincus (Derlicrodoous) rhillomi (Chilton's ariginal specimen of): A, head; D, upper lip; (-D), loft and right mandibles; E, maxilia 1; F, spinetooth from chater plate: G, maxilla コ, H, maitliped; I, gnathopod J; T-K, gnathopod 2 , lett and right; L, peracopol I;

Gnathopod 1; carpus sub-equal to propodus, latio length to width $=1 \cdot 9: 1$; propodus ratio leugth to width $=1 \cdot 9: 1$.

Pleon side plate 1 with margiu a little meven above, two small teeth helow; 2 with margin smootla above, two small leeth below: 3 well toothed alowe, two teeth below; 4 and 5 evenly but lightly dentionlate.

Uropods 1 and 2 not as stromg as in C. (D.) seronta (Bato), but reach well beyond the peduncle of 8 , to halfway the themi ; with rami slender, lanceolate but not elongate.

Telson with 4 spines set fairly well back (see figure), and with two lateral spine-fike hairs on caeh hatf. Branchiar very large, sate-like, with a thick inner wall.

In this species guathopod 2 is subject to considerable variation (see figures) in both males and females. The trindency, however, is always towards the development of two that-lopped palm teeth, am obligne palm, and a well-developed defining tooth. Generally the left gnathoped is more strongly developed.

Locality. Auckiand; Akaroa, New Zoalancl. Chilton collection.
A single speemen which is attributed to this spoeies Prom Great Barrier Istand, New Zealand, is figrred.

The most noteworlly point is thu fact that imopod ? is clongate and strong, although 1 and 2 rach well begond its pedtucle.

Ceradocus (Dentheradoocs) mevreuxi sp. nov.

Cerulocus rubromaculatus Chevpeux non Stimpsom. Chevrenx, 1908 , p. 479 , fig. 6.
? Ceradorus rubromaculatus nom Stimpsont Schellenberg, 1938, p. 63.
This species is clearly marked off lrom the others of its section by the possession of five spines on the apex of each half of the telson. The ciliations of the inner margin of the telsom lobes, the downward production of the posterior margin of the basis of peracopod 5 , and the reduction of teeth, dorsal edge of the pleon segments, are of interest.

The fact that, in these specimens, the dorsal elge of the plem segments is somewhat crembate, suggests the retention of Denticeradocus as a sub-genus only.

Loc. Archipelagoes of Gambier and Thamotu (Dr. Smart, 1904); ? Fiji, Marshall Islands, British Solomon 1slanrls. Philippines (Dr. Sixten Bock).

Ceradocus (Denticliradoctis) caplensis sp. nov.
Matra rubromaculatus Stebbing nom Slimpson; Stebbing 1888, p. 1008 (part), pl. XCV (E).
Coradocus rubromuculatus Stebbing non St impson, 1908, p. 81; 1910 A, p. 456,
? Ceradocus rubromaculutus Sehellenberg non Stimpson, Schellenberg, 1925, p. 154.
'Ihis species may be separated from C. (D.) ramsayi (Haswell) the only other species possessing a large mesio-dorsal tooth on the margins of pleon segments 4 and 5 , by the possession of only three spines on the aper of each lobe of the telson. However, from Stebbing's figures ($1888, \mathrm{pl}$. XCV) other good differenees are:

The eye in C. (D.) ramsayi (Haswell) small and sub-oval, in C. (D.) capensis large, egrg-shaped, filling most of the intarantonnal angle.

Peracopods 1 and 2 with the basis strongly indented on the inner margin and strongly setose. Pleon side plate S_{3} with four teeth below. Uropods 1 and 2 with relatively shorter and stouter pedmeles.

Fig. 7. Ceraloms (Denticerafocks) millomi; variation in gnathopod 2: A-B, gnathopod 2, loft and right, aged 9 ; Ci-D, gnathopod $\ddot{-}$, left and right, agod ob (K.S. del.)

Re-examination of the South Afriean specimens is needed.
Loc. Off Cape Agulhas, 274 metres, Table Bay; ? German West Africa, ? Swakopmund.

The following records cannot be evaluated from the literature. A recheck from the specimens is necessary.

Maera rubromaculatus Stimpsou. Miers (1884, pp. 315-316; Fort Molle; Dundas Straits; Northern Territory.

Ceradocus rubromaculatus (Stimpson) Walker (1904, p. 272, fig. 30). Gulf of Manaar'. Walker's specimens certainly beloug to the sub-genus.

Corudocus mbromuculatus (Stimpson) Walker, 1909, p. 364. Wasim, in mud. Record only.

Fig. 8. A-Q, Cornhocus (Demficerulocus) chillomi, Groat Barrier Ts, matmre $9:$, head; B, mandible, palp; C-D, maxillaw 1-2; E, maxiliped; F, gnathopod 1; G-H, gnathopor a, left and right; T, peraeopod 1 ; $J-L$, peracopods $\hat{n}-\bar{y}$; $M-O$, pheon side phates $1-3 ; P$, urosome; Q, tejson. R-U, Coralocus (Denticeradocts) chiltoni from Anckland: R-S, gnathopor 2, left and right, young o^{*}; $\mathrm{T}-\mathrm{U}$, gnathoporl 2 , letil and right, aged ot. (K.S. del.)

Ceradocus rubromuculatus (Stimpson) Chilton, 1922, p. 8. 45 mites S.W. Cape Jaubert, N.W. Australia.

Ceradones mbromaculatus (Stimpson) Tattersall, 1929, pp. 6-8, pl. 1, fig. 15, 16. Abrolhus Islands, Westerm Australia. This is almost vertainly a new species. Cevodocus mbromaculatus Stimpson. Pirlot, 1934, p. 22.2. $6^{\circ} 8^{\prime}$ lat. N., $121^{\circ} 19^{\prime}$ long. E., $275 \mathrm{~m} . ; 8^{\circ} 43^{\prime}$ lat. N.. $127^{\circ} 16^{\prime}$ long. E., 898 m . (Those depths are catreme for forms usmally fom in littoral waters.) Pirlot, 1936, p. 305. Lombok, Paternoster Island, ete., $0-90 \mathrm{in}$.

Cenvacus rubromuchlatus' (Stimpson) Barnard, 1937, p. 160, fig. 9. Red Sea. (This is probably a new species. The tendency to a vory oblique palm with little definition is certainly not characteristic of the known members of the subgenus. Probably, examination will shaw that other differences are correlated with this.)

Ceruturus rubromatutus (Stimpsou) Walker, 1905, p. 927. (This paper is not available to me.)

The Anstralian and New Zealand specirs may be readily separated by the character of the telsom and by the presence or absence of tecth on the posteriot margins of pleon side plates 1 and 2. ''crudurus (Denticorudocus) ramsayi (Haswell) is recognized by the prominent modio-postero dorsal tooth on each of the pleon segments 4 and 5 , as noted by Haswell.

Systematic Characters in the Suhegenus Denmerraboous.

As I have not seen sufficient specimens of the Ceradocns group, it is not possible to generalize on the systematics of the gromp as a whote. However, within the sub-genus Dentirembocus, the following observations appear to hold good.

Growth Stuges. To the immature stages both sexes are very similar, and the palm of gnathopof 2 is regnlar. The denticnlation of the pleon appears to be fixed in pattern. Some differentiation oceurs during the sexnally mature stage: the palm of guathopod 2 in the male becomes irregular and toothed, oceasionally on both sides of the botly, occasionally on the lelt, but nore often on the right. The serration of the bases of peracopods: $:-5$ becomes more marked and thi dentation of the pleon more cvident. During the later stages, guathopod 2 of the female tends to become irregular, and in some cases is more havily toothed than in the corresponding male. Generally the more heavity toothed ghathopod is also the larger.

It would appear that the shape of the palm of ghathoped 2 is a very unreliahle specific character, althongh its general shape and liability to the development of teeth or not may be useful as a check. In Oevodocus (Denticerudorus) rubromuculutus (Stimps.) and in C. (D.) sellickonsis sheard, no trate of the breaking-np of
the palm into teeth has been observed, ahthough a long rauge of specimens has been examined. Characters which appear to be maltered in the various growth stages, and which appear to exhibit very little variability, are: the tolson, mouthparts, particularly the palp of the mandible, and the dentation of the side plates of pleon segments 1-3. Accordingly these characters have been used for the separation of the species.

Other characters which appear to be spoceife but which hase not been ehecked over a wide range of sperinens are : the promortion of length to width of serments V and VI of gnathopod 1 , the propor! ionate lanth of the gitand cone, the character of the margins of the hasis of percopors 1 and 2 , and the shape of the lover hind corner of the basis of peracopods: $:-5$.

The eye shape and coflour varien to abont the same extent in all the species, the slape oval to round, colome dank ded to light red (in spirit clark to pate). None of the Anstralian or New 化故and spesmens fumish examples of the eye mape of C. (D.) capensis Sheurd.

The close resemblates which exist betwed the for subgenta make me hesiLate to ffect any furfler separation on the basis of literature, partientarly as it would appear that some of the Northern speeios ate misplated in the subgentus Gerndocus (Cerurlorus). However, this is a problem which can ouly be solved by a worker wifla aceess to the Nothern waterial.

Of very grat interest is the tendency to the formation of flat-topped teeth on the patm of grathopod"? partienlarly in ofder speciments of a number of the species. It wonld be idte: to speculate om fheir origin until more work hats been done on the problem. An experment carried ont on Talarchastion mowachollambin stmbing (Sheard, 1938, p. 29) tends to show that the forees operating in the production of malformations of this kind are complex.

However, it might not be out of phaee to sugestst lere that the position and incidence of the tecth may be controlled by fincors affecting the growth rate of the segment and by the position of the powerful monsles within it. In all animats whose exoskeleton is periodieally rencwerl, and which for varying periods of time is in a plastie state, mechanical stresses and strains can be expeeted to produce very definite effects.

LITERATURE.

Barnadd, K. II. (19831) : Great Barmer Rad E.cped. Brit. Mus. (Nat. Tist.), Sei. Rep. Vol. 4, No. 4.
Barıard, K. 11. (1987) : The Jolu Mmray Exp. 193"3-193.1 Brit. Mus. (Nat. Hist.) Sc. Rep. 4, Ne. 6, Lond.
Bate, C. S. (1862) : Cat. Amph. Crust. Lirit. Mus. Lond.

Chevreux，E．（1908）：Mem．Soc．Zool．France，Vul． 20.
Chevreux，1．（1925）：Bull．Snc．Kool．France，Tol． 50.
Chilton，स．（1883）：Prov．Limm．Soc．N．s．Wales，Vol． 9.
Chilton，E．（1916）：Trans．N．7．Insl．，Vol． 48.
Chillon，E．（1921）：Biol．Res．Eudcuvout，Nydmey．I．part 2.
Chilton，E．（1922）：Kumgl．Svens\％．Volenst．Haucl．Bd．6ョ，No．シ̈．
Chilton，E．（1993）：Rec．Lust．Mus，Vol．14，No． 2.
Costa，A．（1853）：Roud．Soc．Burbon N．S．H．，Vol． 2.
Della Valle，$\Lambda .(1893): 7$ ．Fh．Neapel，Vol．20．
Hinle，Il．M1．（1997）：Troms．Roy．Soc．S．Aust．，Vol．ढ1．
Hale，II．M．（1929）：C＇ust．of S．Aust．，Adelaide．
Haswell，W．A．（1880）：Proc．Linn．Soc．N．A．IT ales，Vol． 4.
Haswell，W．A，（1882）：Aust．Stath and Scssile Eyced Crust．
Haswell，W，A．（1885）：Proe．Linu．Soc．N．S．Wales，Vol． 10.
Mios，E．J．（1884）：Rep．Foy．Alcッ\％．Loul．
Nicholls，C．E．（19；8）：Austr．Ant．Exper．1911－1914，Sei．Reps．Series C，Vol．10， pt． 1.
Pirlot，J．M．（19：34）：Sihorge E．гp．Mono．B3d．

Schellenberg，A．（1925）：Bait．Kommlis．Mveresfanna West Afrikus，Vol．B，No． 4.
Suhellenberg，A．（1926）：Deulsche Sudpolar－Eaped．1901－190；，Vol． 18.
Schellenberg，$\Lambda .(1928)$ ：Trans．Koul．Šor＇．Lond．，Vol．－－
Schellenberg，A．（1938）：Ḱumgl．Šr．I＇et．Ahad．Itundl．，Bd．16，No．6．
Sheard，K．（10：36）：Trans．Roy．Soc．sth．Austr．，Iok．（io）．
Sheard，K．（19：37）：Trums．Foy．Noc．Sth．Ausl．，Vol． 61.
Shoomaker，O．（1933）：Am．Mus．Nut．Hist．Novilales，No． 598.
Stehbing，＇T．R．R．（1888）：Rep．Voy．Challemger，Vol． 99.
Stebhing，T．R．R．（1899）：Trans．Limu．Soc．Lond．，S＇er．S，Vol． 7.
stchbing，T．F．R．（1906）：Das Tierveich，Vol． 21.
Stebling，＇T＇．K．R．（1907）：Rec．Ind．Mus．，Vol．1，pate 2．
Stebbing，＇T．R．R．（1908）：Amm．Slh．Afrian Mus．，Vol． 6.
Stebbing，＇I＇．R．R．（1910）：Mem．Aust．Mus．Syrlney．Vul．4，parti．？．
Stobhing，T．R．R．（1910a）：Gon．Gul．Sth．Afrimu Civast．Ann．Sth．African Mus． Vol． 6.
Stephensen，K．（1938）：Medel．Om．Groenland．Brl． 79 ，No． 7.
Stimpson，W．（1855）：Prue．Ac．Philadrlphia，Vol． 7.
＇Tattersall，W．M．（1922）：Jour＇．Linm．Sor＇，Lomul．Vol． 35.
Walker，A．O．（1904）：Rep．Ceylon Peurl Fisherios，Loud．，Vol．ㄹ．
Walker，A．O．（1905）：Founa，Gco！．Mahdive and Lacs．Arch，Vol．2，Supp． 1.
Walker，A．O．（1909）：Trans．Linn．Soc．Lond．，Ser．2，Zool．，Vol． 12.

